Arbitrary order BEM-based Finite Element Method on polygonal meshes

نویسنده

  • Steffen Weißer
چکیده

Polygonal meshes show up in more and more applications and the BEMbased Finite Element Method turned out to be a forward-looking approach. The method uses implicitly defined trial functions, which are treated locally by means of Boundary Element Methods (BEM). Due to this choice the BEM-based FEM is applicable on a variety of meshes including hanging nodes. The aim of this presentation is to give a rigorous construction of H1-conforming trial functions yielding arbitrary order of convergence in a Finite Element Method for elliptic equations. With the help of an interpolation operator, approximation properties are proven which guaranty optimal rates of convergence in the H1as well as in the L2-norm for FEM simulations. These theoretical results are illustrated and verified by several numerical examples on polygonal meshes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Bem-based Fem on Polygonal Meshes from Virtual Element Methods

Polygonal meshes are especially suited for the discretization of boundary value problems in adaptive mesh refinement strategies. Such meshes are very flexible and incorporate hanging nodes naturally. But only a few approaches are available that handle polygonal discretizations in this context. The BEM-based Finite Element Method (FEM) and a residual based error estimate are reviewed in the pres...

متن کامل

Higher Order BEM-Based FEM on Polygonal Meshes

The BEM-based finite element method is reviewed and extended with higher order basis functions on general polygonal meshes. These functions are defined implicitly as local solutions of the underlying homogeneous problem with constant coefficients. They are treated by means of boundary integral formulations and are approximated using the boundary element method in the numerics. To obtain higher ...

متن کامل

Residual error estimate for BEM-based FEM on polygonal meshes

A conforming finite element method on polygonal meshes is introduced which handles hanging nodes naturally. Ansatz functions are defined to fulfil the homogeneous PDE locally and they are treated by means of local boundary integral equations. Using a quasi-interpolation operator of Clément type a residual-based error estimate is obtained. This a posteriori estimator can be used to rate the accu...

متن کامل

Mathematical Modeling and Analysis High-order Mimetic Finite Difference Methods on Arbitrary Meshes

The mimetic finite difference (MFD) methods mimic important properties of physical and mathematical models. As the result, conservation laws, solution symmetries, and the fundamental identities of the vector and tensor calculus are held for discrete models. The existing MFD methods for solving diffusion-type problems on arbitrary meshes are second-order accurate for the conservative variable (t...

متن کامل

An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators

We develop an arbitrary-order primal method for diffusion problems on general polyhedral meshes. The degrees of freedom are scalar-valued polynomials of the same order at mesh elements and faces. The cornerstone of the method is a local (element-wise) discrete gradient reconstruction operator. The design of the method additionally hinges on a least-squares penalty term on faces weakly enforcing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013